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Abstract
The spin response functions for a doped strongly correlated quantum
Heisenberg antiferromagnet, in the form of a t–J model, on low-dimensional
lattices have been explored. In particular, the spin stiffness constant and the spin
diffusion coefficient have been calculated as functions of doping concentration
by different approaches for this model on a chain and on a square lattice. The
occurrences of various possible magnetic phases, namely with long range and
short range orders, and also a novel paramagnetic phase, have been predicted
at zero temperature. Our conclusions regarding the phase diagram agree
remarkably well with those from other recent theoretical approaches. Our
results are discussed in the light of experimental results from the cuprates.

1. Introduction

The microscopic mechanism behind the occurrence of high temperature superconductivity in
the cuprates is still controversial [1]. Nevertheless many of these compounds are products of
doping of parent insulating antiferromagnetic systems. Thus it is quite likely that the analysis
of the state of a doped, strongly correlated insulator displaying quantum antiferromagnetism
will be useful for understanding the anomalous normal phase and the possible mechanism
for high temperature superconductivity. Moreover, the effect of doping on the long range
antiferromagnetic ordering is itself an interesting and challenging problem in theoretical
condensed matter physics [2, 3].

In this paper, we investigate the magnetic correlations for a doped quantum
antiferromagnet in two dimensions in the form of a strongly correlated t–J model involving
holes, at zero temperature. This model is especially important in view of the discovery of
high temperature superconductivity in layered cuprate systems. Besides the spin response, the
charge response functions are equally important for this model, as the cuprates show a very
rich phase diagram exhibiting antiferromagnetism, paramagnetism, pseudo-gap, stripes with
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phase separation and, of course, superconductivity, at various levels of hole concentration [4].
However, the t–J model is too simple and may not be able to capture all the important physics
of the cuprates. It is believed that the t–J model is most suitable to investigate the magnetic
properties of a doped quantum antiferromagnet, particularly in the underdoped regime. It is
in this spirit that we have taken up the present study. Nevertheless, it may be important to
study the charge response of this model as well, using our formalism in the near future to
verify the predictions regarding possible ‘phase separation’ and the electronic charge transport
obtained from various numerical and approximate analytical calculations [5, 6]. It would be
interesting in particular to calculate the charge stiffness constant and examine the possibility of
its softening leading to a phase separation.

Regarding the spin response, there have been several theoretical attempts involving both
analytical and numerical techniques [2, 3, 7, 8]. The conclusions, however, were varied.
This is partly also because of the finer differences in the description of this model itself.
Besides, in most of these calculations the evolution of antiferromagnetism with hole doping
was not predicted and analysed in detail. On the contrary, in many cases the mathematical
form of the weakening of antiferromagnetism with doping was assumed or incorporated
phenomenologically. Therefore it remains quite challenging to examine how far the t–J model
can successfully make predictions regarding the magnetic phase diagram of low-dimensional
doped quantum antiferromagnets.

The physical quantities we calculate here are the spin diffusion coefficient and the spin
stiffness constant as functions of the doping concentration. By combining and analysing our
calculational results, we sketch out the corresponding phases, as the hole concentration is
varied starting from the half-filled band limit. The results indeed exhibit the weakening of
antiferromagnetism with doping and the quantum melting of the spin system after a critical
doping concentration, in very good quantitative agreement with some of the recent theoretical
approaches and qualitatively with the experimental results from cuprates [2–4]. In particular,
we demarcate the regime of the finite order parameter (true long range order), the one with
decaying correlations and the completely uncorrelated paramagnetic regime, all appearing at
zero temperature in our calculations. Moreover, we also argue that the paramagnetic regime
obtained in our calculations is of non-conventional type.

2. Model and mathematical formulation

The Hamiltonian of the strongly correlated t–J model is given by [7]:

Ht−J = Ht + HJ , (1)

where

Ht =
∑

i jσ

ti j Xσ0
i X0σ

j (2)

and

HJ =
∑

i j

Ji j (Si · S j − (1/4)ni n j), (3)

where Xs are the Hubbard operators, and the spin operators can be expressed in terms of the
Hubbard operators as [7]:

Ŝ+
i = Xσ0

i X0σ̄
i , Ŝ−

i = X σ̄0
i X0σ

i , Ŝz
i = (1/2)

∑

σ

σ Xσσ
i . (4)

Besides, we also have for the number operator,

n̂i =
∑

σ

Xσσ
i . (5)
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Because of the presence of strong correlation, only singly occupied sites are retained in the t–J
model and the completeness relation for the Hubbard operators is [7]:

X00
i +

∑

σ

Xσσ
i = 1. (6)

We now define the two principal quantities of interest, namely the spin diffusion coefficient and
the spin stiffness constant.

The spin diffusion coefficient is given by the expression [7],

Dsd = D

χ0
, (7)

where

D = Dt + DJ , (8)

where Dt represents the hopping contribution and DJ represents the exchange contribution to
the total dc spin conductivity D; χ0 is the static uniform spin susceptibility. In our case, D
includes the effect of spin dynamics explicitly and completely besides the usual contributions
from transport.

The spin stiffness constant Dspin is defined as [9],

Dspin = lim
�→0

(
1

2

)
δ2 E

δ�2
, (9)

where E(�) is the total ground state energy in the presence of the staggered Peierl’s phase
(resembling a magnetic flux) �σ , arising from an applied vector potential A(r), such that

�↓ = −�↑ = �. (10)

Moreover, in the presence of this staggered phase the hopping amplitude ti j for a fermion with
spin σ is modified to ti j ei�σ , provided the vector potential has a component along the direction
of hopping.

The significance of the studies in D and Dspin is that these quantities can detect the presence
of the long range magnetic order and the existence of spin–spin correlations in the system. To be
more precise, D provides information regarding the damping of the collective spin excitations
whereas Dspin measures an effective antiferromagnetic exchange coupling, as we will see in
detail in the next section.

3. Calculations and results

We start from the formal expressions for Dt and DJ obtained in our earlier work for the strongly
correlated t–J model in 2D [7].

Dt = π

N

∑

k

(q̂∇ktk)
2 lim
ω→0

lim
q→0

∫ ∞

−∞
dω1|n′(ω1)|Ak(ω1)Ak−q(ω1 − ω), (11)

where A denotes the single hole spectral function corresponding to the coherent part of the
single hole Green’s function and tk is the Fourier component of the hopping integral. As is well
known, the spectral function for one-hole excitations in this model can be written as a sum of
the coherent part arising from the quasi-particle propagation in a narrow band of the order of
2J and an incoherent part due to diffusive motion of holes in a broad band of bandwidth 4t [9].

This expression takes the following form in the doped phase, after simplification:

Dt (n) =
∑

k

C2
k

[
− (1 + n)2

4
[δ(r − εk)]2 − Nincθ(W − |r |)[(1 + n)δ(r − εk)

+ Nincθ(W − |r |)]
]
, (12)

3



J. Phys.: Condens. Matter 19 (2007) 496203 R Chaudhury

where Dt (n) is the doping dependent contribution to the spin conductivity from hopping, C2
k

stands for π
N (q̂∇ktk)2, Ninc denotes the density of states corresponding to the incoherent part

of the single hole Green’s function, n is the original carrier (hole) concentration (n = 1 is the
half-filled limit) and r is given by:

r = 2W (1 − 3δ)

1 + δ
(13)

with W as the bandwidth corresponding to the incoherent part of the hole motion and δ =
1 − n is the doping level (concentration of vacancies). In order that the true long range
antiferromagnetic order exists at zero temperature, we must have the doping dependent spin
conductivity D(n) = Dt (n) + DJ (n) vanishing. This criterion is based on the fact that the
collective excitations for a quantum spin system with long range ordering should be undamped
as temperature approaches zero [10]. One way of achieving that is to have both Dt (n) and
DJ (n), determined self-consistently, to vanish separately. The condition for Dt (n) to vanish
can be expressed as:

2W (1 − 3δ)/(1 + δ) � W (14)

leading to

δ � 1/7. (15)

This also ensures that εk is not equal to 2W (1 − 3δ)/(1 + δ) and as a result all terms in
the above equation for Dt (n) vanish. This condition is consistent with the constraint that εk is
less than 2μ for all k where μ is the chemical potential. This inequality is expected to hold for
an underdoped Mott–Hubbard system [8]. Thus we may conclude that Dt (n) vanishes, as long
as the doping concentration does not exceed 0.14.

Again DJ (n), the exchange contribution to spin conductivity in the doped case is given
by [7, 8]:

DJ (n) = lim
ω→0

lim
q→0

∫ ∞

−∞
dω1|N ′(ω1)|Imχk(ω1)Imχk−q(ω1 − ω), (16)

where

χq(ω) = χ0i Dsdq2/(ω + iDsdq2), N ′(ω) = dN(ω)/dω, Dsd = D/χ0. (17)

The quantity N(ω) is the Bose distribution function and the quantity χq(ω) is the
wavevector dependent dynamical spin susceptibility. We now analyse the quantity N ′(ω).

N(ω) = 1/(eβω − 1). (18)

Thus as T approaches zero, |N ′(ω)| can be shown to behave like δ(ω). Therefore from the
equation written earlier for DJ (n), we see that DJ (n) itself vanishes at zero temperature. This
is quite similar to the result as expected for a pure Heisenberg spin model. Thus only Dt(n)
contributes. Therefore the total spin diffusion coefficient remains zero for δ � 0.14 at zero
temperature, as χ0 is expected to be finite [8]. So for doping concentration below 0.14, the long
range antiferromagnetic order is stable at zero temperature. This implies that there exists a non-
zero value of the Néel temperature TN (if the system is made quasi-two-dimensional) as long
as the doping level is less than 14%. This magnitude of critical doping concentration is very
close to the corresponding threshold value of about 12% obtained by Himeda and Ogata [2] in
an improved variational calculation. The interesting aspect of our result is that this threshold
value of doping is independent of J , although TN itself depends on J as well as on the hole
concentration.

Let us now focus our attention on the higher doping regime where the long range
antiferromagnetic order is absent. We take up the calculation of the spin stiffness constant
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for the strongly correlated t–J model as a function of doping concentration. The objective is to
study the evolution (renormalization) of the antiferromagnetic exchange constant J itself with
doping, which was not addressed at all in the calculation for D. For simplicity, we consider
both the hopping term and the exchange term in the nearest neighbour approximation.

The total spin stiffness constant Ds may be written as:

Ds = Dt
s + DJ

s , (19)

where Dt
s and DJ

s are the contributions from the t term and the J term respectively.

Dt
s = lim

�→0

(
1

2

) (
δ2T

δ�2

)
(20)

and

DJ
s = lim

�→0

(
1

2

) (
δ2 EJ

sf

δ�2

)
, (21)

where T is the kinetic energy contribution and E sf
J is the spin flip part of the exchange energy

contribution (EJ ) to the total energy of the ground state. From the very definitions, E , T and
EJ are the expectation values of Ht−J , Ht and HJ respectively in the ground state. It follows
from our calculations, to be elaborated later, that the direct part of the exchange energy term
does not contribute to DJ

s . The quantity � denotes the magnitude of the staggered phase, as
mentioned before.

From these defining equations it can be seen that Ds per site may be regarded as a quantity
proportional to an ‘effective antiferromagnetic exchange constant Jeff’, as it measures the
kinetic correlation between the holes with up spin and down spin. Again Jeff may be looked
upon as a bare antiferromagnetic exchange constant J , seen in the undoped phase, renormalized
by the sea of mobile holes in the doped phase. Thus when Ds vanishes, the antiferromagnetic
correlations also vanish—leading to the destruction of even short range antiferromagnetic order.

In calculating E , the ground state energy, we adopt a simplified procedure. To avoid
the complicated and messy calculation involving Hubbard operators, we evaluate E using
a very well known and widely used form for the strongly correlated ground state, namely
the Gutzwiller state containing the usual fermion operators, with the ‘no double occupancy
condition’ (NDOC) imposed directly on it. However, it must be remarked that the results are
not expected to be very sensitive to the choice of the form of the trial state. The very general
form of the Gutzwiller state is given by:

|ψG〉 =
∏

l

∏

k,σ

∑

i, j

(1 − αn̂l↑n̂l↓)c+
iσ c+

j−σ ei(ri −r j )·k|vac〉, (22)

where |vac〉 is the vacuum state (having fermionic occupation number equal to zero) and we
have omitted the normalization constant for the time being. The symbols i , j and l denote the
lattice sites and k represents the wavevector for the fermion, in this case the existing hole. The
magnitude of k is bounded by kF (Fermi wavevector) from above. The variational parameter
α is determined by minimizing the expression for E ; whereas E is the expectation value of
Ht−J in the Gutzwiller state itself. Here, however, as we would like to incorporate the effect of
Hubbard operators occurring in Ht−J , not allowing the double occupation of a site by fermions
at all in this doped antiferromagnetic phase, we must incorporate α = 1 in the present case and
then determine the actual E . Moreover, for this calculation, only fermion operators are used in
Ht−J . This is totally consistent with the strong correlation assumed to be present in the lightly
doped phase of the quantum antiferromagnet, as described by the t–J model containing the
Hubbard operators. This Gutzwiller state vector, with the variational parameter set equal to 1

5



J. Phys.: Condens. Matter 19 (2007) 496203 R Chaudhury

implying a Fermi sea with the doubly occupied sites completely projected out, is given by [11]:

|ψG〉NDOC =
∏

l

∏

k,σ

∑

i, j

(1 − n̂l↑n̂l↓)c+
iσ c+

j−σ ei(ri −r j )·k|vac〉. (23)

We take this quantum state |ψG〉NDOC as our ground state for carrying out calculations of the
expectation values.

Then, the kinetic energy contribution of the fermionic system in the presence of the
staggered phase �σ is given as (by incorporating the phase � in the modified ti, j in Ht−J ):

T (� 	= 0) = 2
∏

l,l′ (nn)

∏

k,k′,σ
[
∑

i jσ

cos(�σ/L − (ri − r j) · (k − k′))

− cos(�σ /L − (rl′ − rl) · k′)]t, (24)

where we will have to use equation (10) for �σ corresponding to up spin and down spin
respectively, t is the magnitude of ti j with i j as nearest neighbours, L is the length of the
box and i, j, l, l ′ are the lattice sites. In deriving equation (24), we have made use of the
usual fermionic algebra and also the orthogonality of |vac〉 with any quantum state having
finite fermionic occupation number. T (� = 0) can easily be obtained from equation (24) by
substituting � = 0. Next we will have to evaluate EJ (�). This can easily be done provided
we assume a relation between J and the effective hopping amplitude. Without getting into
the details of various proposed microscopic derivations of the generalized t–J model we, for
simplicity, model J as 2t2

eff/Veff where teff is the effective nearest neighbour hopping amplitude
and Veff is the effective barrier potential encountered in the hopping, within the effective one-
band scenario [8]. It is worthwhile mentioning that t and teff are in general different; however,
we have assumed both of them to be real for simplicity. Moreover, both obey the same
transformation law in the presence of the vector potential. In the calculation for the expectation
value of HJ (�) in the state |ψG〉NDOC, we notice a few features. First of all, only when the two
near neighbour sites are occupied (singly occupied) is there a finite contribution, otherwise not.
Secondly, since the phase is staggered (see equation (10)), it can be seen easily that only the
spin flip terms will retain a �-dependence in the super-exchange process. In the non-spin flip
terms the �-dependence will be absent. Then the result comes out to be:

E sf
J (�) = ((4t2

eff cos(2�))/Veff)〈ψG|NDOCHsf
J |ψG〉NDOC, (25)

where Hsf
J is the spin flip part of the exchange interaction term. The above expectation value

can now be evaluated by locating the nearest neighbour positions for both a one-dimensional
chain and a two-dimensional square lattice. Carrying out the calculation by expressing all
the spin operators for a spin 1

2 particle in terms of the fermion operators in the standard way
(we need not involve Hubbard operators as we are already working with |ψG〉NDOC) and after
performing the standard but detailed algebra, we find that both for a one-dimensional chain
and a two-dimensional square lattice with nearest neighbour spin–spin coupling the following
equation is obtained:

〈ψG|NDOCHsf
J |ψG〉NDOC = J Nl, (26)

where Nl is the expectation value of the number operator corresponding to the total number of
lattice sites singly occupied by spins. This equation (26) is intuitively expected! Again by the
very definition, Nl is obviously a doping dependent quantity. More precisely,

Nl = N(1 − δ), (27)

where δ is the doping (vacancy) concentration and N is the total number of sites in the lattice,
occupied or unoccupied by spins. Thus from the equations (21), (25) and (26), we have

DJ
s = −4J Nl. (28)

6
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Therefore the critical value of δ at which the antiferromagnetic correlations vanish completely
is obtainable from the equation:

Dt
s + DJ

s = 0. (29)

This equation includes the contributions from both dynamical effects and the dilutional effects
arising from the presence of the vacancies.

Now we can analyse various cases, namely situations in one dimension (1D) and two
dimensions (2D). Let us first look at the situation in 1D. For simplicity, we neglect the band
structure effects. We take the continuum approximation and consider a hole Fermi sea. Making
use of the equations (20) and (24) and after a long calculation involving the evaluation of the
derivatives with respect to �, twice of the product of cosine functions and the combination of
the terms properly, we arrive at the following equation:

Dt
s = (−t)

L∏

l,l′

kF∏

k,k′

[
∑

〈i j〉
2 cos((ri − r j ) · (k − k ′))− 2 cos(k ′a)

]
, (30)

where kF is the Fermi wavevector corresponding to the ‘hole Fermi sea’ (related to the surviving
holes) and a is the lattice spacing. It should be emphasized, however, that this ‘hole Fermi sea’
is just one of the mathematical components of the |ψG〉NDOC state, representative of the actual
quantum state of the holes (see equation (23)). Now as we can see, Dt

s becomes a function of
doping concentration δ through the appearance of kF in the expression. Therefore the only task
remaining is to examine whether an allowed solution for δ exists to satisfy the vanishing of Ds.
It can easily be seen that if we demand Ds to be zero, then we get a consistent solution only
when both Dt

s and DJ
s are simultaneously zero, as the parameters t and J are independent in

this model. The conditions for the vanishing of Dt
s are the following: (i) at least one point in

the k ′ space should satisfy

k ′a = (2m + 1)π/2 (31)

or (ii) the difference δk between two points in the k (or k ′ space) should obey

k = (2p + 1)π/2, (32)

where m and p are any integers and |k ′| (and |k| too) is bounded between zero and kF. Again
from the k-space density of states we easily get,

kF = (π/2a)n, n = Nf/N, (33)

where Nf is the total number of fermions (holes) in a chain containing N sites.
Thus for n tending to 1, i.e. for δ tending to zero, we can satisfy the constraints on the k (or

k ′) space, for making Dt
s vanish. Besides, for n equal to 1

2 , i.e. corresponding to δ equal to 0.5,
the constraints can again be satisfied to make Dt

s vanish. There is one more possibility for Dt
s

to go to zero, however. This can be achieved by making kF vanishingly small, corresponding
to the limit δ tending to 1. It can be seen very easily from our earlier expression that only for δ
equal to 1, does DJ

s also vanish. Thus we can say that in 1D the antiferromagnetic correlations
can be completely killed only when the doping level reaches 100%. This reminds one of the
similar result obtained in the case of the 1D Hubbard Model [9]. It is worthwhile mentioning
that the results for the 1D t–J model studied by the various other exact methods have all been
obtained for some special ratios of the parameters t and J [9].

Now, let us analyse the situation in 2D, which is of chief interest to us. As usual, the vector
potential field A(r) is assumed to have been applied along the x direction. We again carry out
the calculation in the continuum approximation, exactly in the same way as in 1D.

Dt
s = (−t)

∏

l,l′

kF∏

k,k′

[
∑

〈i j〉
2 cos((r x

i − r x
j ) · (kx − k ′

x))− 2 cos(k ′
xa)

]
. (34)

7
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The conditions for the vanishing of Dt
s are very similar to the ones found in 1D. As before, one

condition is that at least one k ′
x value (from the whole set) should obey the following:

k ′
x = (2m + 1)π/2a, (k ′

x)min = π/2a. (35)

We also have,

((kmax
x )2 + (kmax

y )2)1/2 = kF, kF = (2πNf)
1/2/(N − 1)a, k2

F = 2π(1 − δ)

a2
. (36)

Now to satisfy the vanishing of Dt
s, we must have

(kF)threshold = π/2a. (37)

This leads to

n � 0.39, (38)

where n represents the original carrier (hole) concentration. Thus for doping concentrations
of 0.61 or less, Dt

s becomes zero. The other condition, namely k ′
x = π/2a, again leads to a

doping concentration of 0.5 or less for spin stiffness due to hopping to vanish. For field applied
along the y-direction too we get the same result. For field applied along any general direction,
one can easily show that for Dt

s to vanish we need,

(k ′
x + k ′

y)min = π/2a. (39)

We also have,

k2
F � ((k ′

x)
2 + (k ′

y)
2)min. (40)

This reduces to

n � π/16. (41)

Thus for doping concentrations of about 80% or less, Dt
s vanishes. The other condition

involving k is more difficult to satisfy in this case. Nevertheless, in all the three cases
mentioned above there is one common condition, namely kF tending to zero (occurring at
δ = 1.0), which also leads to the vanishing of the spin stiffness arising from the hopping.
Thus in the limit of infinitesimal J , the regime of non-zero Dt

s above δ = 0.14, represents
the short range ordered state. Therefore, in general, this short range spin correlation, driven
entirely by the restricted hopping in this case, persists between doping concentration of 0.61 to
just below 1.00. We believe this is a new result, as this case with infinitesimal J has not been
investigated in detail in the context of the t–J model.

Let us now examine the other situation, namely that of finite J . Here as seen earlier in 1D,
the only allowed solution for the total spin stiffness to vanish is δ = 1.0. Thus for finite J , the
short range spin correlations having contributions from both the restricted hopping term and the
exchange term persist in the regime 0.14 � δ < 1.0. This result is in quantitative agreement
with the prediction of Himeda and Ogata [2] that the antiferromagnetic correlations survive up
to the doping level approaching 100%.

4. Conclusions

From our detailed calculations for spin responses presented in the last section, we see that
for doping concentrations between 0.14 and 0.61 the spin stiffness constant corresponding
to the 2D t–J model goes to zero in the case of an infinitesimal value of J . This leads to
complete destruction of antiferromagnetic correlations in this doping regime. It is interesting
to note that the non-zero value of the spin stiffness, present in the doping regime outside the

8
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Table 1. Magnetic phases as a function of doping for infinitesimal J .

δ Phase

0 � δ < 0.14 Long range ordered
0.14 � δ < 0.61 Novel paramagnetic
0.61 � δ < 1.0 Short range ordered

Table 2. Same as table 1 but for finite J .

δ Phase

0 � δ < 0.14 Long range ordered
0.14 � δ < 1.0 Short range ordered

above range, corresponds to an ‘effective spin–spin correlation’ between the mobile holes—
arising almost entirely from their constrained hopping, as J tends to zero here. This scenario
further predicts holes with completely uncorrelated spins in this regime 0.14 � δ < 0.61,
signifying a truly paramagnetic phase of the mobile holes. This, however, is different from
the usual itinerant paramagnetism, seen in Fermi liquids, on two accounts. Firstly, NDOC
at each site will still have to be strictly obeyed. Secondly, the correlation between the up
and the down spins in the hopping process is absent completely. However, at higher doping
concentrations, the correlations between holes with anti-parallel spins (Ds) reappear. This now
leads to a paramagnetic phase with short range ordering, again distinct from the Fermi liquid-
like paramagnetic state because of NDOC. This new phase persists up to doping concentrations
just below 100%.

In the other situation, namely with finite value of J , the spin stiffness constant remains
non-zero for the entire doping range below 1.0. Earlier, from our calculation of the spin
diffusion constant, well defined undamped long wavelength spin excitations were found to
exist for doping levels up to 14%, implying that the long range antiferromagnetic order persists
up to that doping level for finite value of J . These two limits are very significant. One possible
scenario emerging from this is that the ‘true long range’ AF order persists up to δ equal to 0.14
and thereafter in the intermediate regime of δ lying in the range from 0.14 to just below 1.0,
we again have the ‘antiferromagnetically correlated’ paramagnetic phase. The nature of this
phase with short range order appears to be quite complex and will be investigated soon. This
analysis also implies that any serious theoretical attempt to explore superconductivity within
the framework of the t–J model must take into consideration these persistent antiferromagnetic
correlations [6]. Our conclusions regarding the magnetic phase diagram are summarized in
tables 1 and 2. In general, however, there will be a parallel phase diagram for charge response
which coexists with the spin response diagram.

Our results in the regime of vanishingly small J , bear a similarity to the ‘spin polaron’
scenario [12] within the non-Fermi liquid framework. In the other situation, namely J having
finite magnitude, the scenario of correlation between ‘local moments’ [13] seems to be a more
relevant description from our analysis. These results look qualitatively similar to the ones
obtained by SchmittRink et al [14] in the context of the dynamics of one hole in the background
of an antiferromagnet within the purview of a t–J -like model. It may also be interesting to
comment on a few other approaches [15] for calculations of the spin diffusion coefficient of the
t–J model. Our approach is distinct from that of Meisner et al [15] as our spin current density
operator takes care of both hopping (transport) and exchange interaction processes explicitly
in the calculation for D [7]. On the other hand the work of Bonca and Jaklic [15] neglects the
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spin flip processes and its semi-analytical–semi-numerical approach handles only very specific
parameter ratios outside the high-Tc regime.

Before concluding, let us make a few more remarks. The t–J model is strictly valid only in
the low-doping regime. Therefore the critical values of the doping concentration corresponding
to the phase boundaries, as obtained in our calculations, may not always have quantitative
agreement with the corresponding experimentally observed ones for the two-dimensional and
quasi-two-dimensional doped antiferromagnets at very low temperatures. Besides, in our
calculations we have neglected the band structure effects completely. In addition, the inter-
layer processes, which are believed to play very important roles in determining the phase
boundaries in some of the cuprates, have not been considered at all in our calculations for
pure 1D and 2D systems. Nevertheless, our approach does bring out the existence of some
distinct magnetic phases with interesting properties from the t–J model on the low-dimensional
lattices. Furthermore, this has quantitative support from some of the other recent theoretical
approaches and broad qualitative support from the experimental results for the magnetic
properties of some of the cuprates [2–4, 16].

Our future plans includes the investigation of the charge response and exploration of the
possible microscopic phase separation processes for this model, by making use of the same
formalism as has been employed here. This would enable us to have a complete phase diagram
for this model.
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